Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2318787121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478697

RESUMO

Manipulating exciton dissociation and charge-carrier transfer processes to selectively generate free radicals of more robust photocatalytic oxidation capacity for mineralizing refractory pollutants remains challenging. Herein, we propose a strategy by simultaneously introducing the cyano-group and Na into graphitic carbon nitride (CN) to obtain CN-Cy-Na, which makes the charge-carrier transfer pathways the dominant process and consequently achieves the selective generation of free radicals. Briefly, the cyano-group intensifies the local charge density of CN, offering a potential well to attract the hole of exciton, which accelerates the exciton dissociation. Meanwhile, the separated electron transfers efficiently under the robust built-in electric field induced by the cyano-group and Na, and eventually accumulates in the heptazine ring of CN for the following O2 reduction due to the reinforced electron sink effect caused by Na. As a result, CN-Cy-Na exhibits 4.42 mmol L-1 h-1 productivity with 97.6% selectivity for free radicals and achieves 82.1% total organic carbon removal efficiency in the tetracycline photodegradation within 6 h. Additionally, CN-Cy-Na also shows outstanding photodegradation efficiency of refractory pollutants, including antibiotics, pesticide plastic additives, and dyes. This work presents an innovative approach to manipulating the exciton effect and enhancing charge-carrier mobility within two-dimensional photocatalysts, opening an avenue for precise control of free radical generation.

2.
J Am Chem Soc ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498303

RESUMO

The chlorine evolution reaction (CER) is essential for industrial Cl2 production but strongly relies on the use of dimensionally stable anode (DSA) with high-amount precious Ru/Ir oxide on a Ti substrate. For the purpose of sustainable development, precious metal decrement and performance improvement are highly desirable for the development of CER anodes. Herein, we demonstrate that surface titanium oxide amorphization is crucial to regulate the coordination environment of stabilized Ir single atoms for efficient and durable chlorine evolution of Ti monolithic anodes. Experimental and theoretical results revealed the formation of four-coordinated Ir1O4 and six-coordinated Ir1O6 sites on amorphous and crystalline titanium oxides, respectively. Interestingly, the Ir1O4 sites exhibited a superior CER performance, with a mass activity about 10 and 500 times those of the Ir1O6 counterpart and DSA, respectively. Moreover, the Ir1O4 anode displayed excellent durability for 200 h, far longer than that of its Ir1O6 counterpart (2 h). Mechanism studies showed that the unsaturated Ir in Ir1O4 was the active center for chlorine evolution, which was changed to the top-coordinated O in Ir1O6. This change of active sites greatly affected the adsorption energy of Cl species, thus accounting for their different CER activity. More importantly, the amorphous structure and restrained water dissociation of Ir1O4 synergistically prevent oxygen permeation across the Ti substrate, contributing to its long-term CER stability. This study sheds light on the importance of single-atom coordination structures in the reactivity of catalysts and offers a facile strategy to prepare highly active single-atom CER anodes via surface titanium oxide amorphization.

3.
Angew Chem Int Ed Engl ; 62(51): e202314243, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37874325

RESUMO

BiOCl photocatalysis shows great promise for molecular oxygen activation and NO oxidation, but its selective transformation of NO to immobilized nitrate without toxic NO2 emission is still a great challenge, because of uncontrollable reaction intermediates and pathways. In this study, we demonstrate that the introduction of triangle Cl-Ag1 -Cl sites on a Cl-terminated, (001) facet-exposed BiOCl can selectively promote one-electron activation of reactant molecular oxygen to intermediate superoxide radicals (⋅O2 - ), and also shift the adsorption configuration of product NO3 - from the weak monodentate binding mode to a strong bidentate mode to avoid unfavorable photolysis. By simultaneously tuning intermediates and products, the Cl-Ag1 -Cl-landen BiOCl achieved >90 % NO conversion to favorable NO3 - of high selectivity (>97 %) in 10 min under visible light, with the undesired NO2 concentration below 20 ppb. Both the activity and the selectivity of Cl-Ag1 -Cl sites surpass those of BiOCl surface sites (38 % NO conversion, 67 % NO3 - selectivity) or control O-Ag1 -O sites on a benchmark photocatalyst P25 (67 % NO conversion and 87 % NO3 - selectivity). This study develops new single-atom sites for the performance enhancement of semiconductor photocatalysts, and also provides a facile pathway to manipulate the reactive oxygen species production for efficient pollutant removal.

4.
Environ Sci Technol ; 57(36): 13559-13568, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37647604

RESUMO

Mineral dust serves as a significant source of sulfate aerosols by mediating heterogeneous sulfur dioxide (SO2) oxidation in the atmosphere. Given that a considerable proportion of small organic acids are deposited onto mineral dust via long-range transportation, understanding their impact on atmospheric SO2 transformation and sulfate formation is of great importance. This study investigates the effect of oxalate on heterogeneous SO2 uptake and oxidation phenomenon by in situ FTIR, theoretical calculation, and continuous stream experiments, exploiting hematite (Fe2O3) as an environmental indicator. The results highlight the critical role of naturally deposited oxalate in mononuclear monodentate coordinating surface Fe atoms of Fe2O3 that enhances the activation of O2 for oxidizing SO2 into sulfate. Meanwhile, oxalate increases the hygroscopicity of Fe2O3, facilitating H2O dissociation into reactive hydroxyl groups and further augmenting the SO2 uptake capacity of Fe2O3. More importantly, other conventional iron minerals, such as goethite and magnetite, as well as authentic iron-containing mineral dust, exhibit similar oxalate-promoted sulfate accumulation behaviors. Our findings suggest that oxalate-assisted SO2 oxidation on iron minerals is one of the important contributors to secondary sulfate aerosols, especially during the nighttime with high relative humidity.


Assuntos
Ferro , Oxalatos , Sulfatos , Minerais , Oxirredução , Óxidos de Enxofre , Aerossóis
5.
ACS Nano ; 17(15): 15077-15084, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37489696

RESUMO

Two-dimensional (2D) layered photocatalysts with highly ordered out-of-plane symmetry usually display robust excitonic effects, thus being ineffective in driving catalytic reactions that necessitate unchained charge carriers. Herein, taking 2D BiOBr as a prototype model, we implement a superficial asymmetric [Br-Bi-O-Bi] stacking in the out-of-plane direction by selectively stripping off the top-layer Br of BiOBr. This local asymmetry disrupts the diagnostic confinement configuration of BiOBr to urge energetic exciton dissociation into charge carriers and further contributes to the emergence of a surface dipole field that powers the subsequent separation of transient electron-hole pairs. Distinct from the symmetric BiOBr, which activates O2 into 1O2 via an exciton-mediated energy transfer, surface asymmetric BiOBr favors selective O2 activation into ·O2- for a broad range of amine-to-imine conversions. Our work here not only presents a paradigm for asymmetric photocatalyst design but also expands the toolkit available for regulating exciton behaviors in semiconductor photocatalytic systems.

6.
J Am Chem Soc ; 145(24): 13134-13146, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37278596

RESUMO

Stable metal nitrides (MN) are promising materials to fit the future "green" ammonia-hydrogen nexus. Either through catalysis or chemical looping, the reductive hydrogenation of MN to MN1-x is a necessary step to generate ammonia. However, encumbered by the formation of kinetically stable M-NH1─3 surface species, this reduction step remains challenging under mild conditions. Herein, we discovered that deleterious Ti-NH1─3 accumulation on TiN can be circumvented photochemically with supported single atoms and clusters of platinum (Pt1-Ptn) under N2-H2 conditions. The photochemistry of TiN selectively promoted Ti-NH formation, while Pt1-Ptn effectively transformed any formed Ti-NH into free ammonia. The generated ammonia was found to originate mainly from TiN reduction with a minor contribution from N2 activation. The knowledge accrued from this fundamental study could serve as a springboard for the development of MN materials for more efficient ammonia production to potentially disrupt the century-old fossil-powered Haber-Bosch process.

7.
J Am Chem Soc ; 145(25): 14133-14142, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37317545

RESUMO

Electrocatalytic reduction of carbon dioxide into value-added chemical fuels is a promising way to achieve carbon neutrality. Bismuth-based materials have been considered as favorable electrocatalysts for converting carbon dioxide to formic acid. Moreover, size-dependent catalysis offers significant advantages in catalyzed heterogeneous chemical processes. However, the size effects of bismuth nanoparticles on formic acid production have not been fully explored. Here, we prepared Bi nanoparticles uniformly supported on porous TiO2 substrate electrocatalytic materials by in situ segregation of the Bi element from Bi4Ti3O12. The Bi-TiO2 electrocatalyst with Bi nanoparticles of 2.83 nm displays a Faradaic efficiency of greater than 90% over a wide potential range of 400 mV. Theoretical calculations have also demonstrated subtle electronic structural evolutions induced by the size variations of Bi nanoparticles, where the 2.83 nm Bi nanoparticles display the most active p-band and d-band centers to guarantee high electroactivity toward CO2RR.

8.
Water Res ; 242: 120256, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37354842

RESUMO

Green ammonia production from wastewater via electrochemical nitrate reduction contributes substantially to the realization of carbon neutrality. Nonetheless, the current electrochemical technology is largely limited by the lack of suitable device for efficient and continuous electroreduction nitrate into ammonia and in-situ ammonia recovery. Here, we report a flow-through coupled device composed of a compact electrocatalytic cell for efficient nitrate reduction and a unit to separate the produced ammonia without any pH adjustment and additional energy-input from the circulating nitrate-containing wastewater. Using an efficient and selective Cl-modified Cu foam electrode, nearly 100% NO3- electroreduction efficiency and over 82.5% NH3 Faradaic efficiency was realized for a wide range of nitrate-containing wastewater from 50 to 200 mg NO3--N L-1. Moreover, this flow-through coupled device can continuingly operate at a large current of 800 mA over 100 h with a sustained NH3 yield rate of 420 µg h-1 cm-2 for nitrate-containing wastewater treatment (50 mg NO3--N L-1). When driven by solar energy, the flow-through coupled device can also exhibit exceptional real wastewater treatment performance, delivering great potential for practical application. This work paves a new avenue for clean energy production and environmental sustainability as well as carbon neutrality.


Assuntos
Amônia , Nitratos , Águas Residuárias , Energia Renovável , Carbono
9.
Angew Chem Int Ed Engl ; 62(24): e202302286, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37067456

RESUMO

Seawater is one of the most important CO2 sequestration media for delivering value-added chemicals/fuels and active chlorine; however, this scenario is plagued by sluggish reaction rates and poor product selectivity. Herein, we first report the synthesis of nitrogen-doped BiOCl atomic layers to directly split carbon-sequestrated natural seawater (Yellow Sea, China) into stoichiometric CO (92.8 µmol h-1 ) and HClO (83.2 µmol h-1 ) under visible light with selectivities greater than 90 %. Photoelectrons enriched on the exposed BiOCl{001} facet kinetically facilitate CO2 -to-CO reduction via surface-doped nitrogen bearing Lewis basicity. Photoholes, mainly located on the lateral facets of van der Waals gaps, promote the selective oxidation of Cl- into HClO. Sequestrated CO2 also maintains the pH of seawater at around 4.2 to prevent the alkaline earth cations from precipitating. The produced HClO can effectively kill typical bacteria in the ballast water of ocean-going cargo ships, offering a green and safe way for onsite sterilization.

10.
Water Res ; 235: 119828, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36905733

RESUMO

Heterogeneous Fenton reactions of zero-valent iron (ZVI) requires the sufficient release of Fe(II) to catalyze the H2O2 decomposition. However, the rate-limiting step of proton transfer through the passivation layer of ZVI restricted the Fe(II) release via Fe0 core corrosion. Herein we modified the shell of ZVI with highly proton-conductive FeC2O4·2H2O by ball-milling (OA-ZVIbm), and demonstrated its high heterogeneous Fenton performance of thiamphenicol (TAP) removal, with 500 times enhancement of the rate constant. More importantly, the OA-ZVIbm/H2O2 showed little attenuation of the Fenton activity during 13 successive cycles, and was applicable across a wide pH range of 3.5-9.5. Interestingly, the OA-ZVIbm/H2O2 reaction showed pH self-adapting ability, which initially reduced and then sustained the solution pH in the range of 3.5-5.2. The abundant intrinsic surface Fe(II) of OA-ZVIbm (45.54% vs. 27.52% in ZVIbm, according to Fe 2p XPS profiles) was oxidized by H2O2 and hydrolyzed to generate protons, and the FeC2O4·2H2O shell favored the fast transfer of protons to inner Fe0, therefore, the consumption-regeneration cycle of protons were accelerated to drove the production of Fe(II) for Fenton reactions, demonstrated by the more prominent H2 evolution and nearly 100% H2O2 decomposition by OA-ZVIbm. Furthermore, the FeC2O4·2H2O shell was stable and slightly decreased from 1.9% to 1.7% after the Fenton reaction. This study clarified the significance of proton transfer on the reactivity of ZVI, and provided an efficient strategy to achieve the highly efficient and robust heterogeneous Fenton reaction of ZVI for pollution control.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Prótons , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Compostos Ferrosos
11.
Water Res ; 228(Pt A): 119328, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413832

RESUMO

Pyrolysis of pharmaceutical sludge (PS) is a promising way of safe disposal and to recover energy and resources from waste. The resulting PS biochar (PSBC) is often used as adsorbent, but has seldom been explored as catalyst. Herein we demonstrate that PSBC (0.4 g/L) could efficiently activate peroxymonosulfate (PMS) to 100% degrade 4-chlorophenol (4-CP) with rate constants of 0.42-1.70 min-1, outperforming other reported catalysts. Interestingly, the PMS activation pathway highly depended on PSBC pyrolysis temperature, which produced dominantly high-valent iron species (e.g., FeIVO2+) at low temperature but more sulfate radical (SO4·-) and hydroxyl radical (·OH) at higher temperature, e.g., 0.17, 0.23, 0.12 mmol/L of FeIVO2+ and 0.009, 0.038, 0.102 mmol/L of SO4·-/·OH were produced within 10 min by PSBC-600/PMS, PSBC-800/PMS, and PSBC-1000/PMS, respectively. Characterization, density functional theory (DFT) simulation and Pearson correlation analysis revealed that along with the increase of pyrolysis temperatures, the active sites of PSBC gradually shifted from atomically dispersed N-coordinated Fe moieties (FeNx) to iron nitrides (FexN), which activated PMS to produce FeIVO2+ and SO4·-/·OH, respectively. This study clarifies the structure-activity relationships of PSBC for PMS activation, and opens a new avenue for the treatment and utilization of PS as high value-added resources.


Assuntos
Poluentes Ambientais , Pirólise , Esgotos , Ferro , Temperatura , Indústria Farmacêutica
12.
Front Immunol ; 13: 946202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189231

RESUMO

B-1 lymphocytes exhibit specialized roles in host defense against multiple pathogens. Despite the fact that CD19+CD93+B220lo/- B cells have been identified as B-1 progenitors, the definition for B-1 progenitors remains to be elucidated as CD19+CD93+B220+ B cells are capable to give rise to B-1 cells. Given that transcription factor Bhlhe41 is highly and preferentially expressed in B-1 cells and regulates B-1a cell development, we generated a transgenic mouse model, Bhlhe41dTomato-Cre , for fate mapping and functional analysis of B-1 cells. Bhlhe41dTomato-Cre mice efficiently traced Bhlhe41 expression, which was mainly restricted to B-1 cells in B-cell lineage. We showed an efficient and specific Cre-mediated DNA recombination in adult B-1 cells and neonatal B-1 progenitors rather than B-2 cells by flow cytometric analysis of Bhlhe41 dTomato-Cre/+ Rosa26 EYFP mice. Treatment of Bhlhe41 dTomato-Cre/+ Rosa26 iDTR mice with diphtheria toxin revealed a robust efficacy of B-1 cell depletion. Interestingly, using Bhlhe41 dTomato-Cre mice, we demonstrated that neonatal B-1 progenitors (CD19+CD93+B220lo/-) expressed Bhlhe41 and were identical to well-defined transitional B-1a progenitors (CD19+CD93+B220lo/-CD5+), which only gave rise to peritoneal B-1a cells. Moreover, we identified a novel population of neonatal splenic CD19hidTomato+B220hiCD43loCD5lo B cells, which differentiated to peritoneal B-1a and B-1b cells. Bhlhe41 deficiency impaired the balance between CD19hidTomato+B220lo/-CD5hi and CD19hidTomato+B220hiCD5lo cells. Hence, we identified neonatal CD19hidTomato+B220hiCD43loCD5lo B cells as novel transitional B-1 progenitors. Bhlhe41 dTomato-Cre/+ mouse can be used for fate mapping and functional studies of B-1 cells in host-immune responses.


Assuntos
Subpopulações de Linfócitos B , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/metabolismo , Toxina Diftérica/metabolismo , Modelos Animais de Doenças , Integrases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Transcrição/metabolismo
13.
Environ Sci Technol ; 56(20): 14478-14486, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36173086

RESUMO

The photocatalytic O2 activation for pollutant removal highly depends on the controlled generation of desired reactive oxygen species (ROS). Herein, we demonstrate that the robust excitonic effect of BiOBr nanosheets, which is prototypical for singlet oxygen (1O2) production to partially oxidize NO into a more toxic intermediate NO2, can be weakened by surface boronizing via inducing a staggered band alignment from the surface to the bulk and simultaneously generating more surface oxygen vacancy (VO). The staggered band alignment destabilizes excitons and facilitates their dissociation into charge carriers, while surface VO traps electrons and efficiently activates O2 into a superoxide radical (•O2-) via a one-electron-transfer pathway. Different from 1O2, •O2- enables the complete oxidation of NO into nitrate with high selectivity that is more desirable for safe indoor NO remediation under visible light irradiation. This study provides a facile excitonic effect manipulating method for layered two-dimensional photocatalysts and sheds light on the importance of managing ROS production for efficient pollutant removal.


Assuntos
Poluentes Ambientais , Nitratos , Bismuto , Catálise , Luz , Dióxido de Nitrogênio , Oxigênio , Espécies Reativas de Oxigênio , Oxigênio Singlete , Superóxidos
14.
Water Res ; 218: 118453, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35489147

RESUMO

Chloronitrobenzenes (CNBs) are typical refractory aromatic pollutants. The reduction products of CNBs often possess higher toxicity, and the electron-withdrawing substituent groups are detrimental to the ring-opening during the oxidation treatment, leading to ineffective removal of CNBs by either reduction or oxidation technology. Herein we demonstrate a controllable reduction-oxidation coupling (ROC) process composed of zero-valent iron (ZVI) and H2O2 for the effective removal of CNBs from both water and soil. In water, ZVI first reduced p-CNB into 4-chloronitrosobenzene and 4-chloroaniline intermediates, which were then suffered from the subsequent oxidative ring-opening by ·OH generated from the reaction between Fe(II) and H2O2. By controlling the addition time of H2O2, the final mineralization rate of p-CNB reached 6.6 × 10-1 h-1, about 74 times that of oxidation alone (9.0 × 10-3 h-1). More importantly, this controllable ROC process was also applicable for the site remediation of CNBs contaminated soil by either ex-situ treatment or in-situ injection, and, respectively decreased the concentrations of p-CNB, m-CNB, and o-CNB from 1105, 980, and 94 mg/kg to 3, 1, and < 1mg/kg, meeting the remediation goals (p-CNB: < 32.35 mg/kg, o-CNB and m-CNB: < 1.98 mg/kg). These laboratory and field trial results reveal that this controllable ROC strategy is very promising for the treatment of electron-withdrawing groups substituted aromatic contaminates.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Peróxido de Hidrogênio , Ferro , Nitrobenzenos , Oxirredução , Solo , Água , Poluentes Químicos da Água/análise
15.
Angew Chem Int Ed Engl ; 61(21): e202200670, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35238130

RESUMO

Regulating the distribution of reactive oxygen species generated from H2 O2 activation is the prerequisite to ensuring the efficient and safe use of H2 O2 in the chemistry and life science fields. Herein, we demonstrate that constructing a dual Cu-Fe site through the self-assembly of single-atomic-layered Cu5 nanoclusters onto a FeS2 surface achieves selective H2 O2 activation with high efficiency. Unlike its unitary Cu or Fe counterpart, the dual Cu-Fe sites residing at the perimeter zone of the Cu5 /FeS2 interface facilitate H2 O2 adsorption and barrierless decomposition into ⋅OH via forming a bridging Cu-O-O-Fe complex. The robust in situ formation of ⋅OH governed by this atomic-layered catalyst enables the effective oxidation of several refractory toxic pollutants across a broad pH range, including alachlor, sulfadimidine, p-nitrobenzoic acid, p-chlorophenol, p-chloronitrobenzene. This work highlights the concept of building a dual catalytic site in manipulating selective H2 O2 activation on the surface molecular level towards efficient environmental control and beyond.

16.
Environ Sci Technol ; 56(6): 3587-3595, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35199995

RESUMO

Room-temperature molecular oxygen (O2) dissociation is challenging toward chemical reactions due to its triplet ground-state and spin-forbidden characteristic. Herein, we demonstrate that BiOCl of oxygen and chlorine dual vacancies can photocatalytically dissociate O2 into monatomic reactive oxygen (•O-) for the ring opening of aromatic refractory pollutants toward deep oxidation. The electron-rich and geometry-flexible dual vacancies of oxygen and chlorine remarkably lengthen the O-O bond of adsorbed O2 from 1.21 to 2.74 Å, resulting in the rapid O2 dissociation and the subsequent •O- formation. During the photocatalytic degradation of sulfamethazine, the in situ-formed •O- plays an indispensable role in breaking the critical intermediate of pyrimidine containing a stubborn aromatic heterocyclic ring, thus facilitating the overall mineralization. More importantly, BiOCl of oxygen and chlorine dual vacancies is also superior to its monovacancy counterparts on the degradation of other refractory pollutants containing conjugated six-membered rings, including p-chlorophenol, p-chloronitrobenzene, p-hydroxybenzoic acid, and p-nitrobenzoic acid. This study sheds light on the importance of sophisticated defects for regulating the O2 activation manner and deliveries a novel O2 activation approach for environmental remediation with solar energy.


Assuntos
Poluentes Ambientais , Oxigênio , Cloro , Halogênios , Oxirredução , Luz Solar
17.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(1): 28-34, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35048596

RESUMO

Gut microbiota-derived metabolites play vital roles in the regulation of host-gut microbiota mutualism, gut homeostasis and the pathogenesis of multiple human diseases. Fermentation of indigestible dietary fibers by gut microbiota produces a variety of short-chain fatty acids (SCFAs) consisting mainly of acetate, propionate and butyrate. Despite high concentrations of SCFAs in the gut, it has been reported in a large number of studies that SCFAs are involved in the onset and development of multiple diseases, including colitis, diabetes mellitus, hepatic steatosis, and obesity. Recent studies including our work found that SCFAs regulates allergic immune reactions and the pathogenesis of allergic diseases via their action on allergic effector immune cells, including T helper 2 (Th2) cells, type 2 innate lymphoid cells (ILC2), eosinophils, mast cells and basophils. Herein, we reviewed the association of SCFAs with human allergic diseases, their role in regulating the animal model of allergic diseases and the effects of different SCFAs in regulating the functions of allergic effectors cells and the underlying mechanisms, aiming to provide research clues for in-depth investigation in the role played by SCFAs in regulating various allergic diseases.


Assuntos
Hipersensibilidade , Imunidade Inata , Animais , Butiratos , Ácidos Graxos Voláteis , Humanos , Linfócitos
18.
Environ Sci Technol ; 56(3): 1771-1779, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35061393

RESUMO

An appealing strategy in the direction of circular chemistry and sustainable nitrogen exploitation is to efficiently convert NOx pollutants into low-toxic products and simultaneously provide crop plants with metabolic nitrogen. This study demonstrates that such a scenario can be realized by a defect- and morphology-coengineered Ni-Fe-layered double hydroxide (NiFe-LDH) comprising ultrathin nanosheets. Rich oxygen vacancies are introduced onto the NiFe-LDH surface, which facilitate charge carrier transfer and enable photocatalytic O2 activation into superoxide radicals (•O2-) under visible light. •O2- on NiFe-LDH thermodynamically oxidizes NO into nitrate with selectivity over 92%, thus suppressing dangerous NO2 emissions. By merit of abundant mesopores on NiFe-LDH ultrathin nanosheets bearing a high surface area (103.08 m2/g), nitrate can be readily stored without compromising the NO oxidation reactivity or selectivity for long-term usage. The nitrate species can be easily washed off the NiFe-LDH surface and then enriched in the liquid form as easy-to-use chemicals.


Assuntos
Hidróxidos , Nitratos , Ferro , Nitrogênio , Oxigênio , Porosidade
19.
Cytometry A ; 101(2): 150-158, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34173319

RESUMO

Human basophils are terminally differentiated granulocytes that are least abundant in the peripheral blood but play important roles in allergic diseases. Studies on human basophils are limited by the high cost on the isolation of human basophils by magnetic-activated cell sorting (MACS) for negative depletion of non-basophils, followed by CD123-based positive selection of basophils. Moreover, such CD123-based purification of basophils may be limited by blocking of the binding of IL-3/anti-CD123 to the surface CD123. Here we identified SSClow CD4- CD127- HLA-DR- CRTH2high as unique markers for the identification of human basophils through stringent flow cytometric analysis of leukocytes from buffy coat. We established an efficient and cost-effective method for isolating human basophils from buffy coat based on positive magnetic selection of CRTH2+ cells followed by flow cytometric sorting of SSClow CD4- CD127- HLA-DR- CRTH2high cells. Approximately 1 to 1.5 million basophils were isolated from one buffy coat with a purity of >97%. Basophils purified by this method were viable and efficiently responded to key regulators of basophils including IL-3 and anti-IgE. This method can be used for purifying human basophils for subsequent functional studies.


Assuntos
Basófilos , Subunidade alfa de Receptor de Interleucina-3 , Análise Custo-Benefício , Antígenos HLA-DR , Humanos , Interleucina-3/metabolismo , Subunidade alfa de Receptor de Interleucina-3/metabolismo
20.
Front Immunol ; 12: 754208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733286

RESUMO

The autonomic nervous system has been studied for its involvement in the control of macrophages; however, the mechanisms underlying the interaction between the adrenergic receptors and alternatively activated macrophages (M2) remain obscure. Using FVB wild-type and beta 2 adrenergic receptors knockout, we found that ß2-AR deficiency alleviates hepatobiliary damage in mice infected with C. sinensis. Moreover, ß2-AR-deficient mice decrease the activation and infiltration of M2 macrophages and decrease the production of type 2 cytokines, which are associated with a significant decrease in liver fibrosis in infected mice. Our in vitro results on bone marrow-derived macrophages revealed that macrophages from Adrb2-/- mice significantly decrease M2 markers and the phosphorylation of ERK/mTORC1 induced by IL-4 compared to that observed in M2 macrophages from Adrb2+/+ . This study provides a better understanding of the mechanisms by which the ß2-AR enhances type 2 immune response through the ERK/mTORC1 signaling pathway in macrophages and their role in liver fibrosis.


Assuntos
Clonorquíase/complicações , Cirrose Hepática Biliar/imunologia , Cirrose Hepática/imunologia , Ativação de Macrófagos , Neuroimunomodulação/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Animais , Sistema Nervoso Autônomo/fisiopatologia , Ductos Biliares/parasitologia , Ductos Biliares/patologia , Células Cultivadas , Clonorquíase/imunologia , Clonorquíase/fisiopatologia , Citocinas/sangue , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Cirrose Hepática Biliar/etiologia , Cirrose Hepática Biliar/parasitologia , Cirrose Hepática Biliar/patologia , Sistema de Sinalização das MAP Quinases , Macrófagos/classificação , Macrófagos/imunologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Camundongos Knockout , Receptores Adrenérgicos beta 2/deficiência , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA